دانلود متن کامل پایان نامه

داننشگاه محقق اردبیلی

دانشکده­ی فنی و مهندسی

گروه آموزشی عمران

پایان نامه برای دریافت درجه­ کارشناسی ارشد

در رشته­ی :مهندسی عمران گرایش سازه

عنوان:

بهسازی لرزه ای پایه پل های بتن آرمه با FRP

استاد راهنما:

دکترهوشیار ایمانی

استاد مشاور:

دكترملك محمدرنجبر

پژوهشگر:

سعیده حسین زاده کجیدی

زمستان 1392

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

چكيده:

امروزه بسیاری از سازه های بتن آرمه که در حال بهره برداری هستند، عمری بیش از 75 سال دارند و به دلیل حوادث طبیعی از قبیل زلزله و باد و یا بر اثر خستگی مصالح و یا عوامل خورنده آسیب دیده اند. نگهداري از سازه ها به دليل هزينه ساخت و تعمير بسيار حائز اهميت مي باشد. با مطالعه رفتار سازه هاي بتني مشخص مي شود عوامل متعددي مانند: اشتباهات طراحي و محاسبه، عدم اجراي مناسب، تغيير كاربري سازه ها از دوام آنها مي كاهد ضمنا تغيير آيين نامه هاي ساختماني ) باعث تغيير در بارگذاري و ضرايب اطمينان مي شود) نيز سبب ارزيابي و بازنگري مجدد طرح و سازه مي گردد تا در صورت لزوم بهسازي و تقويت شود.

روش های متنوعی برای تعمیر و تقویت سازه های بتن آرمه استفاده می شود. از آن جمله می توان تقویت با پوشش فلزی و بتنی را نام برد، که در مقایسه، پوشش فولاد نسبت به بتن از نظر وزن مزیت دارد اما فولاد نیز دارای نقصان های متعددی از جمله هزینه سنگین و سختی در اجرا و همچنین آسیب پذیری در محیط های خورنده می باشد. ماده جدید FRP سال هاست که به سبب ویژگی های منحصر به فرد از جمله تقویت و مقاوم سازی سازه های موجود در موارد خمشی و برشی و دور گیری و مقاومت بالا در برابر خوردگی و . . . در مقاوم سازی و بهسازی سازه ها به کار می روند.

ستون هاي بتن مسلح، اعضاي اصلي مقاوم در برابر بارهاي افقي و قائم در سازه هاي بتني به شمار مي آيد لذا مقاوم كردن ستون ها در برابر نيروهاي زلزله مي تواند نقش مهمي را در مقاوم سازي كل سازه ايفا كند. در نتيجه استفاده از كامپوزيت هاي  FRPجهت مقاوم سازي ستون هاي بتني مسلح در دنيا گسترش يافته است و مطالعه در اين زمينه از طرف محققين زيادي صورت مي گيرد.

در این تحقیق یک پل با ابعاد واقعی انتخاب و قاب های آن با نرم افزار اجزای محدود ABAQUS تحت بارهای ثقلی، باد، آب و زلزله قرار گرفته و با سه شتاب نگاشت زلزله، منجیل، Northridge و Chi Chi تایوان، تحت تحلیل استاتیکی ودینامیکی غیر خطی قرار گرفته و با چسباندن لایه های CFRP بر حسب نیاز هر پایه، تغییر در میزان حداکثرجابجایی، میزان برش و اتلاف انرژی پایه آنها  بررسی شده  و اختلاف در نتایج دو روش استاتیکی و دینامیکی محاسبه شده است.

 

كليد واژه­ها: پل بتن آرمه، باد، آب، شتاب نگاشت، بهسازی، ورق FRP

 

 

فهرست مطالب

شماره و عنوان  صفحه

فصل اول: کلیات

1-1- مقدمه ………………………………………………………………………………………………………………………………………………………………2

1-2- بیان مسئله ………………………………………………………………………………………………………………………………………………………3

1-3- پیشینه تحقیق …………………………………………………………………………………………………………………………………………………3

1-4- ضرورت، اهمّیت و هدف تحقیق ………………………………………………………………………………………………………………………8

1-5- ساختار تحقیق …………………………………………………………………………………………………………………………………………………9

فصل دوم: آشنایی با مصالح کامپوزیتی FRP

2-1- معرفی ورق های FRP …………………………………………………………………………………………………………………………………11

2-1-1- مقدمه………………………………………………………………………………………………………………………………………………..12

2-1-2- انواع ورق های کامپوزیت FRP ……………………………………………………………………………………………………..12

2-1-3- رزین های تشكيل دهندهFRP ………………………………………………………………………………………………………12

2-1-4- انواع فيبرهاي تشكيل دهنده FRP ……………………………………………………………………………………………….12

2-1-5- خصوصيات الياف………………………………………………………………………………………………………………………………13

2-1-6- ویژگی های مکانیکی کامپوزیت های FRP …………………………………………………………………………………..14

2-1-7- مقایسه عملکرد انواع کامپوزیت های FRP در مقاوم سازی سازه ها ………………………………………….. 15

2-1-8- ضریب ایمنی ………………………………………………………………………………………………………………………………….. 16

2-1-9- روش های مقاوم سازی ……………………………………………………………………………………………………………………16

2-1-10- ملاحظات اجرایی …………………………………………………………………………………………………………………………..19

2-1-11- اصلاح شکل مقطع ………………………………………………………………………………………………………………………..20

2-1-12- ضوابط طراحی و بهسازی ستون ها با FRP ………………………………………………………………………………..21

فصل سوم: روش های مدل سازی و تحلیل لرزه ای پل ها

3-1- مقدمه …………………………………………………………………………………………………………………………………………………………….29

3-2- روش بدست آوردن تغییر مکان هدف در FEMA-356 …………………………………………………………………………….29

3-3- روش بدست آوردن جابجایی تقاضا در ATC-40 ……………………………………………………………………………………….33

3-3-1- روش طیف ظرفیت برای بدست آوردن نقطه عملکرد سازه بر اساس آیین نامه ی  ATC-40…….36

3-4- رفتار اعضای سازه ………………………………………………………………………………………………………………………………………….50

3-5- مقاومت مصالح ………………………………………………………………………………………………………………………………………………51

3-5-1- روش بدست آوردن کرانه ی پایین مقاومت مصالح و مقاومت مورد انتظار مصالح در طراحی……….52

3-6- ضریب آگاهی …………………………………………………………………………………………………………………………………………………54

3-7- کاربرد ضریب آگاهی در بهسازی و طراحی بر اساس عملکرد ……………………………………………………………………..56

3-8- معیارهای پذیرش برای روش های غیر خطی ………………………………………………………………………………………………56

3-9- معیارهای پذیرش برای سازه های بتن آرمه بر اساس دستورالعمل بهسازی و FEMA-356 …………………..58

3-9-1- مقاومت مورد انتظار در اعضای بتن مسلح بر اساس FEMA-356 ………………………………………………58

3-9-2- مقاومت مورد انتظار در اعضای بتن مسلح بر اساس دستورالعمل بهسازی ……………………………………58

فصل چهارم: معرفی سازه مورد مطالعه و تحلیل آن

4-1- مقدمه ……………………………………………………………………………………………………………………………………………………………64

4-2- معرفی سازه مورد مطالعه ……………………………………………………………………………………………………………………………..64

4-2-1- مشخصات مصالح و پل مورد مطالعه ……………………………………………………………………………………………….64

4-3- بارگذاری ……………………………………………………………………………………………………………………………………………………….70

4-3-1- بار زنده …………………………………………………………………………………………………………………………………………….70

4-3-2- اثر جریان آب …………………………………………………………………………………………………………………………………..72

4-3-3- فشار جانبی خاک …………………………………………………………………………………………………………………………….72

4-3-4- اثر باد ……………………………………………………………………………………………………………………………………………….72

4-3-5- اهداف عملکردی ……………………………………………………………………………………………………………………………..73

4-3-6- بارهای جانبی …………………………………………………………………………………………………………………………………..75

4-3-7- اثر P-∆  …………………………………………………………………………………………………………………………………………..76

4-4- روش تحلیل دینامیکی پل ها ……………………………………………………………………………………………………………………….81

4-4-1- روش تحلیل دینامیکی طیفی (با بهره گرفتن از تحلیل مدها) …………………………………………………………….82

4-4-2- روش تحلیل دینامیکی تاریخچه زمانی …………………………………………………………………………………………..84

فصل پنجم: آنالیز مدل و بررسی نتایج

5-1- مقدمه ……………………………………………………………………………………………………………………………………………………………93

5-2- مدل سازی در نرم افزار اجزای محدود ABAQUS ………………………………………………………………………………….93

5-2-1- مدل سازی بتن در نرم افزار ABAQUS ………………………………………………………………………………………93

5-2-2- مدل سازی FRP در ABAQUS …………………………………………………………………………………………………97

5-2-3- مدل سازی آرماتور در ABAQUS …………………………………………………………………………………………….100

5-3- ارزیابی صحت مدل تحلیلی ………………………………………………………………………………………………………………………..100

5-4- تحلیل دینامیکی غیر خطی ………………………………………………………………………………………………………………………102

5-4-1- اثر CFRP بر جابجایی و برش پایه …………………………………………………………………………………………….102

5-4-2- نمودارهای تاریخچه زمانی جابجایی پایه ها …………………………………………………………………………………108

5-4-3- اثر CFRP بر انرژی ……………………………………………………………………………………………………………………..138

5-5-  نتایج حاصل از اثر باد بر روی پل ها ………………………………………………………………………………………………………..155

فصل ششم: جمع بندی و نتیجه گیری

6-1- کلیات …………………………………………………………………………………………………………………………………………………………157

6-2- خلاصه تحقیق و نتیجه گیری …………………………………………………………………………………………………………………..157

6-3- پیشنهادات برای تحقیقات آینده ……………………………………………………………………………………………………………….158

مراجع ……………………………………………………………………………………………………………………………………………………………………159

 

 

 

فهرست جدول­ها

 

شماره و عنوان جدول                                                               صفحه

 

جدول2-1: ویژگی های مکانیکی کامپوزیت های GFRP،  CFRP و  AFRP………………………………………………….14

جدول2-2: مقایسه بین ویژگی های انواع  FRPها ……………………………………………………………………………………………..15

جدول 2-3: ضرایب ایمنی جزئی برای فولاد و FPR ……………………………………………………………………………………………16

جدول2-4: مقایسه ای بین روش های مختلف مقاوم سازی ستون ها …………………………………………………………………19

جدول 3-1: مقادیر تقریبی Co براساس دستورالعمل بهسازی و FEMA-356 ………………………………………………….30

جدول 3-2: تعیین …………………………………………………………………………………………………………………………………………….31

جدول 3-3: ضریب اصلاح Cm بر اساس دستورالعمل بهسازی و FEMA-356 ………………………………………………..32

جدول 3-4: مقادیر ضریب  C2……………………………………………………………………………………………………………………………….32

جدول 3-5: شتاب مبنای طرح (A) در مناطق مختلف کشور  …………………………………………………………………………….33

جدول 3-6: مقادیر حداقل مجاز SRA و SRV……………………………………………………………………………………………………….43

جدول 3-7: تعیین نوع سازه بر اساس آیین نامه ی ATC-40 ……………………………………………………………………………45

جدول 3-8: تعیین ضریب اصلاح میرایی بر اساس آیین نامه یATC-40 ………………………………………………………….46

جدول3-9: ضرایب تبدیل کرانه ی پایین مقاومت به مقاومت مورد انتظار……………………………………………………………53

جدول 3-10: ضرایب تبدیل کرانه ی پایین مقاومت به مقاومت مورد انتظار………………………………………………………..54

جدول 3-11: تعیین ضریب k بر اساس FEMA-356 ………………………………………………………………………………………..55

جدول 3-12: تعیین ضریب k بر اساس دستورالعمل بهسازی ……………………………………………………………………………..55

جدول 3-13: کاربرد ضریب آگاهی k در محاسبه ی ظرفیت اعضای کنترل شونده توسط نیرو و تغییر شکل در تحلیل های غیر خطی………………………………………………………………………………………………………………………………………………56

جدول 3-14: پارامترهاي مدل سازي و معيارهاي پذيرش براي روش هاي غيرخطي – تيرهاي بتن مسلح …………………………………………………………………………………………………………………………………………………………………………………..60

جدول 3-15: پارامترهاي مدل سازي و معيارهاي پذيرش براي روش هاي غيرخطي–  ستون هاي بتن مسلح  …………………………………………………………………………………………………………………………………………………………………………………..61

جدول3-16: پارامترهاي مدل سازي و معيار پذيرش روش هاي غيرخطي – اتصالات تير – ستون بتن مسلح …………………………………………………………………………………………………………………………………………………………………………………..62

جدول 4-1: مشخصات بتن و فولاد ………………………………………………………………………………………………………………………..67

جدول 4-2: مقادیرتنش فروپاشی CFRP………………………………………………………………………………………………………………68

جدول 4-3 :ویژگی هاي مکانیکی ورق هاي CFRP …………………………………………………………………………………………….68

جدول 4-4: ترکیبات بار محتمل مورد استفاده در تحلیل استاتیکی غیر خطی …………………………………………………..81

جدول 4-5: مشخصات شتاب نگاشت های بکار برده شده جهت ارزیابی لرزه ای پل ها ……………………………………..85

جدول 5-1: حداکثر تغییر مکان حاصل از تحلیل برای سطح خطر1 ………………………………………………………………..103

جدول 5-2: حداکثر تغییر مکان حاصل از تحلیل برای سطح خطر2 …………………………………………………………………104

جدول 5-3: حداکثر تغییر مکان پایه های p1  و p2  برای زلزله منجیل، سطح خطر 2 بعد از چسباندن 3 لایه ……………………………………………………………………………………………………………………………………………………………………………….105

جدول 5-2: حداکثر تغییر مکان پایه  p1برای زلزله منجیل، سطح خطر 2 بعد از چسباندن 5 لایه ………………..105

جدول 5-2: برش پایه قبل و بعد از بهسازی برای زلزله سطح خطر 1………………………………………………………………..106

جدول 5-2: برش پایه قبل و بعد از بهسازی برای زلزله سطح خطر2…………………………………………………………………107

جدول 5-7: تغییرات اتلاف انرژی به درصد …………………………………………………………………………………………………………153

جدول 5-8: نتایج تحلیل برای نیروی باد …………………………………………………………………………………………………………….155

 

 

 

فهرست شکل­ها

شماره و عنوان شکل    صفحه

 

شكل 2-1:FRP  ساخته شده از فيبرهاي نا همسانگرد يك طرفه، عمده تنش بوسيله الياف تحمل مي شود……..11

شکل 2-1: منحنی تنش-  كرنش الياف پليمري در مقايسه با فولاد. ……………………………………………………………………13

شکل 2-3: جکت FRP با الیاف افقی …………………………………………………………………………………………………………………….17

شکل 2-4: پوشش طولی FRP ………………………………………………………………………………………………………………………………18

شکل 2-5: اصلاح شکل مقطع، بدون شکستن گوشه ها. ………………………………………………………………………………………20

شکل 2-6: اصلاح شکل مقطع، پس از شکستن گوشه ها. …………………………………………………………………………………….20

شکل 3-1: منحنی طیف ظرفیت و منحنی طیف تقاضا با میرایی های متفاوت در دستگاه مختصات جابجایی طیفی – شتاب طیفی (فرمت ADRS)…………………………………………………………………………………………………………………..34

شکل 3-2: منحنی طیف ظرفیت و منحنی طیف تقاضا با میرایی های متفاوت در دستگاه مختصات جابجایی طیفی – شتاب طیفی (فرمت ADRS)…………………………………………………………………………………………………………………..35

شکل 3-3: منحنی طیف پاسخ الاستیک با میرایی ٪5…………………………………………………………………………………………..36

شکل 3-4: منحنی ظرفیت (پوش آور) …………………………………………………………………………………………………………………..37

شکل 3-5: روند تبدیل طیف پاسخ استاندارد به فرمت ADRS……………………………………………………………………………38

شکل 3-6: روند تبدیل منحنی ظرفیت به فرمت ADRS……………………………………………………………………………………..40

شکل 3-7: منحنی طیف ظرفیت و طیف پاسخ همراه با یکدیگر در فرمت ADRS. …………………………………………..41

شکل 3-8: روش یافتن جابجایی معادل بصورت تقریبی از روی منحنی طیف ظرفیت و طیف تقاضا………………….41

شکل 3-9: تقریب دو خطی منحنی طیف ظرفیت………………………………………………………………………………………………….42

شکل 3-10: روش بدست آوردن نقطه ی عملکرد از روی منحنی طیف ظرفیت دندانه دار………………………………….42

شکل 3-11: مفاهیم تصویری پارامترهای مؤثر در محاسبه ی   ……………………………………………………………………45

شکل 3-12: منحنی های طیف تقاضای کاهش یافته پس از اعمال ضرایب کاهش یافته در هر مرحله………………47

شکل 3-13: مختصات نقطه ی طیفی فرض شده ( ) و بدست آمده  در منحنی طیف ظرفیت…………………47

شکل3-14: منحنی طیف پاسخ الاستیک قاب 1 …………………………………………………………………………………………………..48

شکل3-15: منحنی ظرفیت قاب 1 تحت زلزله منجیل (سطح خطر 2)………………………………………………………………..49

شکل 3-16: نمودار عملکرد قاب 1. ……………………………………………………………………………………………………………………….49

شکل 3-17: منحنی رفتار عضو شکل پذیر. …………………………………………………………………………………………………………..50

شکل 3-18: منحنی رفتار عضو نیمه شکل پذیر. …………………………………………………………………………………………………..51

شکل 3-19: منحنی رفتار عضو شکننده. ……………………………………………………………………………………………………………….51

شکل 3-20: مقاومت مورد انتظار، اسمی و طراحی درنمودار لنگر- دوران ……………………………………………………………52

شکل 3-21: معیارهای پذیرش برای اعضای اصلی(P=Primary) ‌و اعضای غیراصلی(S=Secondary)…………….57

شکل 3-22: نمودار بار- جابجایی در المان های بتنی بر اساس FEMA-356 …………………………………………………..58

شکل 4-1: ‌نمای عمومی پل مورد مطالعه. …………………………………………………………………………………………………………….65

شکل 4-2: مقطع عرضی پل. ………………………………………………………………………………………………………………………………….66

شکل 4-3: مقطع ستون و سر ستون پایه های p1 و p6. ……………………………………………………………………………………….66

شکل 4-4: مقطع ستون و سر ستون پایه های p2 تا p5. ………………………………………………………………………………………67

شکل 4-5: قاب1 و قاب 2، مدل شده در ABAQUS. ………………………………………………………………………………………..69

شکل 4-6: نحوه استقرار بار نوع اول بر روی عرشه پل. …………………………………………………………………………………………71

شکل 4-7: فشار جانبی خاک. ………………………………………………………………………………………………………………………………..72

شکل 4-8: عرشه پل که تحت تاثیر بارگذاري طولی و عرضی قرار دارد ……………………………………………………………….78

شکل 4-9: عرشه پل که تحت تاثیر بارگذاري طولی و عرضی معادل زلزله قرار دارد …………………………………………..79

شکل 4-10: زوج شتاب نگاشت زلزله chi-chi (سطح خطر 1). ………………………………………………………………………….86

شکل 4-11: زوج شتاب نگاشت زلزلهNorthridge  (سطح خطر 1 …………………………………………………………………….87

شکل 4-12: زوج شتاب نگاشت زلزلهManjil  (سطح خطر 1). …………………………………………………………………………..88

شکل 4-13: زوج شتاب نگاشت زلزله chi-chi (سطح خطر 2). ………………………………………………………………………….89

شکل 4-14: زوج شتاب نگاشت زلزلهNorthridge  (سطح خطر 2). ………………………………………………………………….90

شکل 4-15: زوج شتاب نگاشت زلزلهManjil  (سطح خطر 2). …………………………………………………………………………..91

شکل 5-1: نقاط انتگرال گیری در دو حالت کاهش یافته و کاهش نیافته. …………………………………………………………..94

شکل 5-2: المان C3D8 و شماره وجه های محلی آن. ………………………………………………………………………………………..94

شکل 5-3: نقاط انتگرال گیری برای المان پوسته در دو حالت کاهش یافته و غیر کاهش یافته. ……………………….97

شکل 5-4: ورقه تک جهته. …………………………………………………………………………………………………………………………………….98

شکل 5-5: بردار نرمال برای المان های خرپایی سه بعدی. ………………………………………………………………………………..100

شکل 5-6: مشخصات هندسی ستون مورد بررسی. …………………………………………………………………………………………….101

شکل 5-7: مقایسه نتایج مدل سازی عددی با نتایج آزمایشگاهی. …………………………………………………………………….102

شکل 5-8: نمودارتاریخچه زمانی جابجایی پایه p1 تحت زلزلهchi-chi  سطح خطر1 در جهت عرضی……………108

شکل 5-9: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزله chi-chi  سطح خطر 1 در جهت طولی…………108

شکل 5-10: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزله  Chi-chiسطح خطر 1 در جهت عرضی. ……………………………………………………………………………………………………………………………………………………………………………….109

شکل 5-11: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزله chi-chi  سطح خطر 1 در جهت طولی……..109

شکل 5-12: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزله  chi-chi سطح خطر 1 در جهت عرضی…….110

شکل 5-13: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزله  chi-chi سطح خطر 1 در جهت طولی………110

شکل 5-14: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزله  chi-chi سطح خطر 1 در جهت عرضی.  ……………………………………………………………………………………………………………………………………………………………………………….111

شکل 5-15: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزله  chi-chi سطح خطر 1 در جهت طولی.      ……………………………………………………………………………………………………………………………………………………………………………….111

شکل 5-16: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزله   chi-chi سطح خطر 1 در جهت عرضی. ……………………………………………………………………………………………………………………………………………………………………………….112

شکل 5-17: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزله  chi-chi سطح خطر 1 در جهت طولی.      ……………………………………………………………………………………………………………………………………………………………………………….112

شکل 5-18: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزله  Northridgeسطح خطر 1 در جهت عرضی.                                                                                                                                           ……………………………………………………………………………………………………………………………………………………………………………….113

شکل 5-19: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزله  Northridgeسطح خطر 1 در جهت طولی.                                                                                                                                            ……………………………………………………………………………………………………………………………………………………………………………….113

شکل 5-20: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزله  Northridgeسطح خطر 1 در جهت عرضی.                                                                                                                                            ……………………………………………………………………………………………………………………………………………………………………………….114

شکل 5-21: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزله  Northridgeسطح خطر 1 در جهت طولی.                                                                                                                                            ……………………………………………………………………………………………………………………………………………………………………………….114

شکل 5-22: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزله  Northridgeسطح خطر 1 در جهت عرضی.                                                                                                                              ……………………………………………………………………………………………………………………………………………………………………………….115

شکل 5-23: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزله  Northridgeسطح خطر 1 در جهت طولی.                                                                                                                                    ……………………………………………………………………………………………………………………………………………………………………………….115

شکل 5-24: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزله  Northridgeسطح خطر 1 در جهت عرضی. ……………………………………………………………………………………………………………………………………………………………………………….116

شکل 5-25: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزله  Northridgeسطح خطر 1 در جهت طولی. ……………………………………………………………………………………………………………………………………………………………………………….116

شکل 5-26: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزله  Northridgeسطح خطر 1 در جهت عرضی.                                                                                                                                  ……………………………………………………………………………………………………………………………………………………………………………….117

شکل 5-27: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزله  Northridgeسطح خطر 1 در جهت طولی.                                                                                                                                    ……………………………………………………………………………………………………………………………………………………………………………….117

شکل 5-28: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزلهManjil  سطح خطر 1 در جهت عرضی.

……………………………………………………………………………………………………………………………………………………………………………….118

شکل 5-29: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزلهManjil  سطح خطر 1 در جهت طولی.         ……………………………………………………………………………………………………………………………………………………………………………….118

شکل 5-30: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزلهManjil  سطح خطر 1 در جهت عرضی.       ……………………………………………………………………………………………………………………………………………………………………………….119

شکل 5-31: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزلهManjil  سطح خطر 1 در جهت طولی.        ……………………………………………………………………………………………………………………………………………………………………………….119

شکل 5-32: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزلهManjil  سطح خطر 1 در جهت عرضی.       ……………………………………………………………………………………………………………………………………………………………………………….120

شکل 5-33: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزلهManjil  سطح خطر 1 در جهت طولی.        ……………………………………………………………………………………………………………………………………………………………………………….120

شکل 5-34: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزلهManjil  سطح خطر 1 در جهت عرضی.       ……………………………………………………………………………………………………………………………………………………………………………….121

شکل 5-35: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزلهManjil  سطح خطر 1 در جهت طولی.        ……………………………………………………………………………………………………………………………………………………………………………….121

شکل 5-36: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزلهManjil  سطح خطر 1 در جهت عرضی.       …………………………………………………………………………………………………………………………………………………………………………….. 122

شکل 5-37: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزلهManjil  سطح خطر 1 در جهت طولی.        ……………………………………………………………………………………………………………………………………………………………………………….122

شکل 5-38: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزله chi-chi  سطح خطر 2 در جهت عرضی.                              ……………………………………………………………………………………………………………………………………………………………………………….123

شکل 5-39: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزله chi-chi  سطح خطر 2 در جهت طولی.      ……………………………………………………………………………………………………………………………………………………………………………….123

شکل 5-40: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزله chi-chi  سطح خطر 2 در جهت عرضی.     ……………………………………………………………………………………………………………………………………………………………………………….124

شکل 5-41: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزله chi-chi  سطح خطر 2 در جهت طولی.      ……………………………………………………………………………………………………………………………………………………………………………….124

شکل 5-42: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزله chi-chi  سطح خطر 2 در جهت عرضی.     ……………………………………………………………………………………………………………………………………………………………………………….125

شکل 5-43: نمودار تاریخچه زمانی جابجایی پایهp3  تحت زلزله chi-chi  سطح خطر 2 در جهت طولی.      ……………………………………………………………………………………………………………………………………………………………………………….125

شکل 5-44: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزله  Chi-chiسطح خطر 2 در جهت عرضی.     ……………………………………………………………………………………………………………………………………………………………………………….126

شکل 5-45: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزله chi-chi  سطح خطر 2 در جهت طولی.       ……………………………………………………………………………………………………………………………………………………………………………….126

شکل 5-46: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزله  Chi-chiسطح خطر 2 در جهت عرضی.      ……………………………………………………………………………………………………………………………………………………………………………….127

شکل 5-47: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزله chi-chi  سطح خطر 2در جهت طولی ……………………………………………………………………………………………………………………………………………………………………………….127

شکل 5-48: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزله  Northridgeسطح خطر 2 در جهت عرضی.                                                                                                                                   ……………………………………………………………………………………………………………………………………………………………………………….128

شکل 5-49: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزله  Northridgeسطح خطر 2 در جهت طولی.                                                                                                                                   ……………………………………………………………………………………………………………………………………………………………………………….128

شکل 5-50: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزله  Northridgeسطح خطر 2 در جهت عرضی.                                                                                                                                ……………………………………………………………………………………………………………………………………………………………………………….129

شکل 5-51: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزله  Northridgeسطح خطر 2 در جهت طولی.                                                                                                                                    ……………………………………………………………………………………………………………………………………………………………………………….129

شکل 5-52: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزله  Northridgeسطح خطر 2 در جهت عرضی.                                                                                                                                  ……………………………………………………………………………………………………………………………………………………………………………….130

شکل 5-53: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزله  Northridgeسطح خطر 2 در جهت طولی.                                                                                                                                    ……………………………………………………………………………………………………………………………………………………………………………….130

شکل 5-54: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزله  Northridgeسطح خطر 2 در جهت عرضی.                                                                                                                                  ……………………………………………………………………………………………………………………………………………………………………………….131

شکل 5-55: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزله  Northridgeسطح خطر 2 در جهت طولی.                                                                                                                                  ……………………………………………………………………………………………………………………………………………………………………………….131

شکل 5-56: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزله  Northridgeسطح خطر 2 در جهت عرضی.                                                                                                                                 ……………………………………………………………………………………………………………………………………………………………………………….132

شکل 5-57: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزله  Northridgeسطح خطر 2 در جهت طولی.                                                                                                                                    ……………………………………………………………………………………………………………………………………………………………………………….132

شکل 5-58: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزلهManjil  سطح خطر 2 در جهت عرضی       ……………………………………………………………………………………………………………………………………………………………………………….133

شکل 5-59: نمودار تاریخچه زمانی جابجایی پایه p1 تحت زلزلهManjil  سطح خطر 2 در جهت طولی.        ……………………………………………………………………………………………………………………………………………………………………………….133

شکل 5-60: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزلهManjil  سطح خطر 2 در جهت عرضی.       ……………………………………………………………………………………………………………………………………………………………………………….134

شکل 5-61: نمودار تاریخچه زمانی جابجایی پایه p2 تحت زلزلهManjil  سطح خطر 2 در جهت طولی.        ……………………………………………………………………………………………………………………………………………………………………………….134

شکل 5-62: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزلهManjil  سطح خطر 2 در جهت عرضی.       ……………………………………………………………………………………………………………………………………………………………………………….135

شکل 5-63: نمودار تاریخچه زمانی جابجایی پایه p3 تحت زلزلهManjil  سطح خطر 2 در جهت طولی.        ……………………………………………………………………………………………………………………………………………………………………………….135

شکل 5-64: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزلهManjil  سطح خطر 2 در جهت عرضی.        ……………………………………………………………………………………………………………………………………………………………………………….136

شکل 5-65: نمودار تاریخچه زمانی جابجایی پایه p5 تحت زلزلهManjil  سطح خطر 2 در جهت طولی.        ……………………………………………………………………………………………………………………………………………………………………………….136

شکل 5-66: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزلهManjil  سطح خطر 2 در جهت عرضی.       ……………………………………………………………………………………………………………………………………………………………………………….137

شکل 5-67: نمودار تاریخچه زمانی جابجایی پایه p6 تحت زلزلهManjil  سطح خطر 2 در جهت طولی.       ……………………………………………………………………………………………………………………………………………………………………………….137

شکل 5-68: نمودار  انرژی- زمان قاب1 تحت زلزله chi-chi ، سطح خطر 1. ………………………………………………….138

شکل 5-69: نمودار انرژی- زمان قاب 2 تحت زلزله chi-chi ، سطح خطر 1. ………………………………………………….138

شکل 5-70: نمودار انرژی- زمان قاب 3 تحت زلزله chi-chi ، سطح خطر 1. ………………………………………………….139

شکل 5-71: نمودار انرژی- زمان قاب 5 تحت زلزله chi-chi ، سطح خطر 1. ………………………………………………….139

شکل 5-72: نمودار انرژی- زمان قاب 6 تحت زلزله chi-chi ، سطح خطر 1. ………………………………………………….140

شکل 5-73: نمودار انرژی- زمان قاب 1 تحت زلزله Northridge، سطح خطر 1. …………………………………………..140

شکل 5-74: نمودار انرژی- زمان قاب 2 تحت زلزله Northridge، سطح خطر 1. …………………………………………..141

شکل 5-75: نمودار انرژی- زمان قاب 3 تحت زلزله Northridge، سطح خطر 1. …………………………………………..141

شکل 5-76: نمودار انرژی- زمان قاب 5 تحت زلزله Northridge، سطح خطر 1. …………………………………………..142

شکل 5-77: نمودار انرژی- زمان قاب 6 تحت زلزله Northridge، سطح خطر 1. …………………………………………..142

شکل 5-78: نمودار انرژی- زمان قاب 1 تحت زلزله Manjil، سطح خطر 1. …………………………………………………..143

شکل 5-79 نمودار انرژی- زمان قاب 2 تحت زلزلهManjil ، سطح خطر 1. …………………………………………………….143

شکل 5-80:  نمودار انرژی- زمان قاب 3 تحت زلزله Manjil، سطح خطر 1. ………………………………………………….144

شکل 5-81: نمودار انرژی- زمان قاب 5 تحت زلزله Manjil، سطح خطر 1. ……………………………………………………144

شکل 5-82: نمودار انرژی- زمان قاب 6 تحت زلزلهManjil ، سطح خطر 1. ……………………………………………………145

شکل 5-83: نمودار انرژی- زمان قاب 1 تحت زلزله chi-chi ، سطح خطر 2. ………………………………………………….145

شکل 5-84: نمودار انرژی- زمان قاب 2 تحت زلزله chi-chi ، سطح خطر 2. ………………………………………………….146

شکل 5-85: نمودار انرژی- زمان قاب 3 تحت زلزله chi-chi ، سطح خطر 2. ………………………………………………….146

شکل 5-86: نمودار انرژی- زمان قاب 5 تحت زلزله chi-chi ، سطح خطر 2. ………………………………………………….147

شکل 5-87: نمودار انرژی- زمان قاب 6 تحت زلزله chi-chi ، سطح خطر 2. ………………………………………………….147

شکل 5-88: نمودار انرژی- زمان قاب 1 تحت زلزله Northridge، سطح خطر 2. …………………………………………..148

شکل 5-89: نمودار انرژی- زمان قاب 2 تحت زلزله Northridge، سطح خطر 2. …………………………………………..148

شکل 5-90: نمودار انرژی- زمان قاب 3 تحت زلزله Northridge، سطح خطر 2……………………………………………..149

شکل 5-91: نمودار انرژی- زمان قاب 5 تحت زلزله Northridge، سطح خطر 2 ……………………………………………149

شکل 5-92: نمودار انرژی- زمان قاب 6 تحت زلزله Northridge، سطح خطر 2. …………………………………………..150

شکل 5-93: نمودار انرژی- زمان قاب 1 تحت زلزله Manjil، سطح خطر 2. …………………………………………………..150

شکل 5-94: نمودار انرژی- زمان قاب 2 تحت زلزلهManjil ، سطح خطر 2. …………………………………………………..151

شکل 5-95: نمودار انرژی- زمان قاب 3 تحت زلزله Manjil، سطح خطر 2. …………………………………………………..151

شکل 5-96: نمودار انرژی- زمان قاب 5 تحت زلزله Manjil، سطح خطر 2. …………………………………………………..152

شکل 5-97: نمودار انرژی- زمان قاب 6 تحت زلزلهManjil ، سطح خطر 2. …………………………………………………..152

 

 

 

 

 

 

 

 

 

 

فصل اول

کلیات

 

 

 


 

 


 

  • مقدمه

زمین لرزه پدیده ای طبیعی و غیر قابل اجتناب است که به خودی خود سبب تلفات جانی و مالی نمی باشد، بلکه در کنش حرکات زمین با محیط های ساخته ی دست بشر است که عدم توانایی در مقاومت ساخته ها باعث خسارت جدی می شود. در پی زمین لرزه ها علاوه بر تلفات جانی، ثروت ملی نیز به هدر رفته و بار مالی زیادی بر اقتصاد کشورها بوجود می آید که این امر در مورد کشور هایی با اقتصاد زودشکن اثرات جدی و دراز مدت به جا می گذارد (ناطق الهی،1390).

كشور ايران از نظر لرزه خيزي در يكي از فعال ترين مناطق جهان قرار گرفته است. در سالهاي اخير به طور متوسط در هر پنج سال يك زمين لرزه شديد در نقطه اي ازكشور اتفاق افتاده كه باعث خسارات جاني و مالي بسياري شده است (حمره، 1387)، پل ها به عنوان سازه های استراتژیک ومهم و به واسطه آن که یکی از عناصر مهم در شریان های حیاتی هستند، باید به گونه ای طراحی شوند که در مدت زلزله و بعد از آن هم بتواند عملکرد خود را داشته باشد، عدم تخریب پل و خارج نشدن از بهره برداری پس ازیک زمین لرزه شدید ازبسیاری تلفات جانی و اقتصادی پس از حادثه خواهد کاست (زارع برزشی، 1391).

در چند دهه گذشته بموازات توسعه راه های کشور حجم قابل توجهی از بودجه های مربوطه جهت پل ها اختصاص یافته است. متاسفانه علی رغم پیشرفت های فن آوری در مهندسی مواد هنوز این سازه ها با گذشت زمان به دلایل  مختلف از جمله شرایط محیطی نامناسب و ترافیک سنگین و حوادث طبیعی دچار خرابی های متعددی می شوند. این خرابی ها در صورت عدم توجه به موقع علاوه بر کاهش سطح بهره برداری و عمر مفید سازه هزینه های تعمیر و نگهداری را شدیدا افزایش خواهد داد. که اهمیت بکارگیری روشهای منطقی  و سینماتیک در مدیریت نگهداری پل ها به منظور حفظ ایمنی استفاده کنندگان از پل و جلوگیری از هدر رفتن سرمایه های کشور را نمایان می سازد (رهگذر،1387). بنابراین دست یابی به روش یا روش هایی جهت بهسازی لرزه ای پل هایی که در برابر زلزله به اندازه کافی مقاوم نیستند می تواند بسیار مهم باشد (مرادی، 1390).

برای بهسازی، روش های مختلفی مانند مرمت موضعی، استفاده از پوشش بتنی، استفاده از پوشش فولادی و غیره تحت عنوان “ روش های کلاسیک ” وجود دارد. یکی از روش های نوینی که در سال های اخیر مورد توجه صنعتگران قرار گرفته است، مقاوم سازی یا بهسازی ساختمان های موجود با بهره گرفتن از کامپوزیت ها می باشد. در این زمینه تحقیقات زیادی صورت گرفته و آیین نامه هایی مقدماتی نیز برای استفاده از آنها تهیه شده است (ناطق الهی، 1385). اين مواد به دليل داشتن مقاومت كششي بالا، ابزار مناسبي جهت افزايش ظرفيت اعضاي بتني و بنايي به شمار مي آيند. امروزه دركشورهاي پيشرفته حجم بالايي از بهسازي و تقويت سازه هاي بتني و بنايي با بهره گرفتن از اين مواد انجام مي پذيرد (حمره، 1387).

1-2- بیان مسئله

در اين پايان نامه به مقاوم سازی پایه پل های بتنی با ورقFRP  تحت بار دینامیکی زلزله پرداخته خواهد شد،  پایه های پل با ابعاد واقعی ومحصور شده با FRR درنرم افزار ABAQUS مدل سازی می شود، برای تحلیل پایه تحت بار زلزله از تحلیل دینامیکی غیر خطی استفاده شده است تا اثرFRP بر روی پایه های پلی که تحت شتاب نگاشت هستند مورد بررسی قرار گیرد.

 

1-3- پیشینه تحقیق

تكنولوژي استفاده از ورق هايFRP در مهندسي عمران اولين بار در سال 1984در سوئيس توسط پروفسورMeier  مطرح و مورد آزمايش قرار گرفت كه در آن ورق هاي Carbon FRP (CFRP) جهت مقاوم سازي تيرهاي بتني آزمايش شدند. بزرگ ترين مزيت  FRPنسبت به فولاد داشتن نسبت مقاومت به وزن بالاي آن مي باشد. كاتسوماتا و همكارانش در سال1987 و 1988 روش استفاده ازFRP  را جهت مقاوم سازي ستون هاي بتني مسلح ارائه دادند.

یکی از روش های معمول جهت مقاوم سازی و افزایش ظرفیت باربری ستون های بتن آرمه، ایجاد روپوش پیرامونی، جهت محدود نمودن انبساط عرضی ستون بارگذاری شده است. این شیوه علاوه بر جلوگیری ازکمانش آرماتورهای طولی ستون، با به تعویق انداختن جداشدگی پوسته بتنی، انهدام ستون را نیز به تاخیر می اندازد.

مطالعات پیرامون روش مقاوم سازی ستون های بتن آرمه در ابتدای قرن بیستم و در مورد ستون های مقاوم شده با روپوش فولادی صورت پذیرفت. این مطالعات نشان داد که وجود دورپیچ پیرامون ستون، سبب افزایش مشخصه های باربری آن می گردد اثر نامطلوب شرایط محیطی بر روپوش های فولادی و مراحل دشوار و زمان بر ایجاد این روپوش ها، سبب گردید که صفحات کامپوزیتی از جنس پلیمرهای مسلح شده با الیاف موسوم به ورقه هایFRP از بدو پیدایش به تدریج به عنوان جایگزین روکش های فولادی مورد استفاده قرار گیرند.

تحقیقات آزمایشگاهی  و نرم افزاری زیادی در زمینه بهسازی ستون های بتنی با  FRPدر ایران نیزانجام شده است :

  1. برقي، مصطفي و حداد، میثم، 1387، ارزیابی تقویت خمشی پایه پل بتن آرمه توسط GFRP تحت بارگذاری دوره ای، دانشگاه صنعتي خواجه نصير طوسي.

در اين تحقيق مدل ابعاد واقعي پايه يك پل به مقطع دايره ايجاد شده و رفتار آن تحت بارگذاري دوره اي تك محوره (بارگذاري همزمان ثقلي وجانبي قرار گرفته كه بارگذاري جانبي آن به صورت دوره اي مي باشد) بررسی شده که در اين تحقيق ستون معرفي شده توسط ورقه GFRP به ضخامت 1 ميلي متر) در طول كل ستون) دورپيچ شده است، پوش منحني هيسترزيس برش پايه در دو حالت بدون محصور شدگي و با محصورشدگي توسطFRP  رسم شد نتایج بدین صورت می باشد:

آ. پوشش تقويتي GFRP(با ضخامت 1 ميلي متر)باعث بالا بردن ظرفيت خمشي پايه پل هاي بتن آرمه به ميزان 8% شده است.

ب. اصلي ترين خاصيت پوشش تقويتي GFRP، افزايش كرنش گسيختگي به ميزان 50 % كه منجر به شكل پذيري و اتلاف انرژي بيشتر مي شود و نيز عملكرد لرزه اي ستون را بهبود مي بخشد.

  1. صالحیان، حمید رضا و اصفهانی، محمد رضا “بررسی آزمایشگاهی مقاومت ستون بتنی محصورشده با GFRP تحت اثر توام نیروی محوری و لنگر خمشی و مقایسه با مدل های تئوری” ،1388.

در این تحقیق نمونه های آزمایشگاهی ستون با مقطعی مربعی شکل بررسی شده اند این تحقیق نشان می دهد که اعمال لنگر خمشی بر نمونه ستون های محصورشده با  FRP علاوه بر اندرکنش بار فشاری و لنگر خمشی، اثر کاهنده ای بر مقاومت فشاری بتن محصورشده می گذارد. اعمال لنگر خمشی بر مقطع ستون، سبب توزیع غیر یکنواخت تنش فشاری وارد بر مقطع و انبساط عرضی آن می گردد به همین دلیل استفاده از روابط تخمین مقاومت فشاری بتن محصور شده، با افزایش لنگر خمشی، به پاسخ های غیر واقعی و فاقد اطمینان می انجامد.

  1. جلال، مصطفي” ارزیابی ظرفیت باربری پل های بهسازی شده با کامپوزیت FRP”1388.

در اين مقاله، گزيده راهكارهاي ارزيابي عملكرد يك پل بهسازي شده با بهره گرفتن از مصالح كمپوزيتي جديدارائه گرديده است. به اين منظور، ابتدا يك سيستم سنجش عملكرد ايجاد شده و اندازه گيري هاي سنجش عملكرد به منظور ارزيابي پارامترهاي مختلف مشخص گردید، سپس يك الگوريتم نقص يابي و شناسايي سيستم به منظور كمي سازي مقادير هدف، انتخاب شده و در نهايت نتايج فعالیت هاي بهسازي به منظورسنجش تغييرات عملكرد پل، مورد ارزيابي و تجزيه و تحليل قرار گرفت. در نهايت پس از اتمام كار بهسازي، نتايج به منظور تعيين وقوع يا عدم وقوع هرگونه تغيير در عملكرد پل، مورد ارزيابي قرار گرفت، اين روش افزايش در سختي سازه را در دوره زماني سوم دسامبر 1999 تا مي 2000 نشان مي دهد.

  1. عباسزاده ، مهدي “مقايسه دقت پيش بيني مدل هاي ارائه شده براي محصورشدگي ستون هاي بتني دايروي محصور شده با الياف FRP”1388.

اين مطالعه بر پيش بيني حداكثر تنش و كرنش بتن محصور شده كه مهمترين پارامترها از ديد طراحي بوده و تاثير زيادي در تقريب منحني هاي تنش – كرنش دارند متمركز شده است. به اين منظور، مدل هاي محصور شدگي به دو گروه مدل هاي محصورشدگي پايه فولادي و مدل هاي محصورشدگي تجربي و تحليلي طبقه بندي شده و روابط و ويژگي هاي منحصر به فرد هر مدل مرور شد سپس، مقايسه بين مدل هاي مختلف در پيش بيني حداكثر تنش و كرنش نهائي محصور شدگي صورت گرفت. نتايج حاصل از ارزيابي هاي صورت گرفته نشان داد كه مدل هاي موجود در پيش بيني رفتار واقعي محصورشدگي بتن به جواب هاي يكسان و قابل قبولي خصوصاٌ در پيش بيني كرنش نرسيده و تنها براي محدوده اي كه براي آن كاليبره شده اند جواب هاي مطلوبي ارائه مي دهند .

  1. عباس نیا، رضاو رستمیان، مهدی” بررسی رفتار تنش – کرنش ستون ها یا نمونه های بتنی مسلح و محصورشده با FRP”1389.

در این مقاله به بررسی تحقیقات انجام شده در مورد رفتار تنش – کرنش ستون های بتنی مسلح مقاوم سازی شده با FRP پرداخته شد و نتایجی مطابق زیر بدست آمد:

  • اثر نسبت لاغری برروی ظرفیت باربری ستونهای بتنی محصور شده با ژاکت FRP چشم گیر تر از ستون های مسلح معمولی می باشد.
  • اثر مقاوم سازی با افزایش نسبت لاغری کاهش می یابد.
  • در زمانی که نسبت لاغری کمتر از 5/87 باشد، ظرفیت باربری ستون مسلح شده با FRP هنوز 21 درصد بزرگتر از ستون بتن مسلح بدون ژاکت FRP (عادی) می باشد.
  1. محمد کاظم، شربتدار و بهاري زاده، علی، سیوندي پور، عباس ” بررسی نرم شدگی و سخت شدگی کرنش بتن محصور شده با ورق هاي FRP بر مقاومت و شکل پذیري اعضاء فشاري “1388.

در این مقاله به بررسی مقاومت بتن محصور شده با انواع ورق هاي FRP در دو مرحله سخت شدگی کرنش و نرم شدگی کرنش و همچنین اثر محصور شدگی بر شکل پذیري اعضاء بتن مسلح پرداخته شده و این نتیجه حاصل شده که محصورشدگی اعضاء بتنی موجب افزایش مقاومت در هر دو مرحله سخت شدگی کرنش و نرم شدگی کرنشی و افزایش شکل پذیري و همچنین بهبود رفتار لرزه اي آن می شود.

  1. دانش، فخر الدين بهشتي اول و سيد بهرام، شاهرودي، مهناز” تخمين پارامترهاي اثرگذار بر رفتار غيرخطي ستون هاي دورپيچ شده با CFRP به روش اجزاء محدود”1388.

در این تحقیق براي صحت سنجي نحوه مدل سازي، نمونه هايي از كارهاي معتبر آزمايشگاهي با بار محوري ثابت و بار جانبي رفت و برگشتي cyclic)) با نرم افزار اجزاء محدود  ABAQUS مدل سازي شده اند. در اين مرحله، بتن با المان حجمي هشت گرهی (C3D8)  و دورپيچ آن با المان هاي غشايي چهار گرهي  (M3D4)مدل شده اند و از معادل سازي و يكپارچه كردن مقطع استفاده نشده است. نتايج بدست آمده، تطابق قابل قبولي با كارهاي آزمايشگاهي دارد همچنین در بررسي انجام شده بر روي پارامتر طول لايه هاي دورپيچ و تأثير آن بر روي رفتار ستون ها مشاهده گرديد با افزايش پارامتر طول لايه هاي دورپيچ، ميزان ظرفيت ستون در تحمل تغيير مكان و برش پايه افزايش مي يابد همچنين در اين راستا مشخص گرديد افزايش طول دورپيچ ها تأثير چنداني بر بارتسليم نداشته و فقط بار ماكزيمم سازه را افزايش داده است و به اين ترتيب باعث افزايش انعطاف پذيري رفتار سازه مي گردد. با بهره گرفتن از نتايج بدست آمده مشاهده شد در يك نگاه كلي گرچه تأثير لايه ها بر روي برش پايه قابل تحمل توسط ستون چندان قابل توجه نبوده است ليكن تأثير تعداد لايه ها بر روي نيروي قابل تحمل توسط ستون بيشتر از تأثير طول لايه ها بوده است به عنوان مثال با افزودن يك لايه 20 سانتي متري دورپيچ FRP حدود 3 درصد و با افزودن يك لايه 30 سانتي متري دورپيچ FRP حدود 4 درصد افزايش مي يابد. در حالي كه در حالت استفاده از دولايه دورپيچ اين درصد افزايش نيروي قابل تحمل توسط ستون بترتيب حدود 4 و 6 در صد خواهد بود. همچنين نشان داده شد شكل پذيري ستون نيز با افزايش قابل توجهي همراه است ليكن استفاده از دو لايه دورپيچ بجاي يك لايه دور پيچ افزايش نسبي زيادي در شكل پذيري ستون ايجاد نمي كند اين نتيجه در مورد تغيير شكل بيشينه قبل از شكست نيز صادق است.

  1. بهشتی، سید بهرام و پارسائی، محمد “بررسی تقویت خمشی پایه پل بتنی مسلح با FRP به روش اجزای محدود “1388.

در این تحقیق اثر عرض مقطع به ضخامت پوسته، ارتفاع دورپیچ از پای ستون و جنس دورپیچ بر شکل پذیری، مقاومت و پارامترهای خمشی در ستون بتن مسلح دایره ای تحت اثر همزمان بار محوری و جانبی بررسی شده و برنامه اجزای محدود  ABAQUSجهت این کار استفاده شده است. نتایج نشان می دهد این ورق ها موجب افزایش شکل پذیری و همچنین بهبود پارامترهای مقاومت خمشی می گردد.

  1. رهگذر، رضا و قنبری، حمیدو علمدارزاده، پیمان” ارزیابی آسیب پذیری وارائه طرح بهسازی لرزه ای پل بتن آرمه در محور سیرجان – قطروئیه در استان کرمان”1390.

از آنجایی که داشتن شکل پذیری کافی یکی از الزامات اساسی در زمینه مقاوم سازی سازه ها به شمار می آید، در این مقاله آسیب های وارده به پل قطروئیه شناسائی شده و نهایتا روش هایی برای تقویت پایه های بتنی آن که تحت تاثیر خوردگی ناشی از کربناسیون قرار گرفته است ارائه شده است.

چون پل مورد نظر از نوع مهم می باشد، ارزیابی کارایی و ایمنی در برابر زلزله از روش تحلیل دینامیکی خطی استفاده شده است.

  1. واثقی، اکبر و زرجو، محسن” ارزیابی اثر الیاف کامپوزیتیFRP در تقویت پایه هاي بتنی دایره اي شکل پل ها به روش اجزا محدود”1390.

در این تحقیق با بهره گرفتن از نرم افزار ABAQUS ظرفیت خمشی و شکل پذیري پایه پل ها با طول هاي مختلف دور پیچ از الیاف FRP مورد بررسی قرار گرفت و با توجه به قیمت این نوع از الیاف ارتفاع مورد نیاز پیشنهاد شد.

  • استفاده از الیاف CFRP در ستون با مقطع دایره اي در افزایش برش پایه نقش موثري داشته اما بعلت محدود بودن کرنش تسلیم این گونه الیاف در افزایش شکل پذیري تاثیرکمتري نسبت به الیاف GFRP دیده شد.
  • اثر تغییر نسبت لاغري، بطور کلی ورق هاي CFRP در تقویت ستون هایی که داراي تغییر مکان جانبی کمی هستند. L/D<4)) خوب عمل کرده و باعث افزایش مناسب برش پایه و شکل پذیري می شود. بنابراین اگر هدف از استفاده دورپیچ، افزایش میزان برش پایه باشد، در ستون هایی با ارتفاع متفاوت، کاربرد CFRP منطقی تر است.
  • اثر تغییر عرض مقطع به ضخامت پوسته (D/t) ، مقاومت جانبی ستون با کاهش نسبت t) /(D افزایش می یابد. براي هر دو نوع دورپیچ با D/t))، بعلت کاهش محصوریت بتن توسط دورپیچ و لذا رفتار تردتر آن، کاهش مقاومت بیشتري پس از ماکزیمم مقاومت جانبی اتفاق می افتد.

اثر تغییر میزان بار محوريN / No ، افزایش نیروي محوري، کشش و فشار بیشتري در پوسته رخ می دهد و لذا کاهش مقاومت ستون بتنی به همراه پوسته سبب کاهش ناگهانی مقاومت مقطع می گردد.

  1. ابراهیمی مقدم، امین و المولی، امیر عبدالله” تحلیل عددی و مقاوم سازی پایه پل های بتنی مسلح با مقطع دایره ای به روش تقویت با ورقه های کامپوزیتی CFRP “1390.

در این تحقیق اثر عرض مقطع به ضخامت پوسته، ارتفاع دورپیچ از پای ستون به ارتفاع کل ستون و جنس دورپیچ بر شکل پذیری، مقاومت و پارامترهای خمشی در ستون بتن مسلح دایره ای تحت اثر همزمان بار محوری و جانبی بررسی می شود. برنامه اجزاء محدود ABAQUS جهت این کار استفاده شده است. نتایج نشان می دهد که استفاده از این ورق ها موجب افزایش شکل پذیری و همچنین بهبود پارامترهای مقاومت خمشی می گردد.

در این نوشتار پس از تشریح نحوه مدل سازی تمامی نمونه ها با نرم افزار ABAQUS با روش استاتیکی غیر خطی با کنترل تغییر مکان تحلیل شده تا عملکرد نمونه ها بررسی شود بطور کلی هدف این پژوهش بررسی رفتار ستون های ناکارآمد و تاثیرتقویت ناحیه مفصل خمیری با الیاف شیشه و کربن بر عملکرد این ستون هاست. مقایسه نتایج نمونه هایی که در آزمایشگاه تحت بارگذاری قرار گرفته اند، با نمونه تحلیل شده با نرم افزار نشان می دهد که نتایج بدست آمده از مدل اجزاء محدود در مقایسه با نتایج آزمایشگاهی دارای نتایج قابل قبولی است.

  1. کریمی کنزق، عباس” ارزیابی لرزه ای پل ها با بهره گرفتن از تحلیل استاتیکی غیر خطی (پوش آور) “1388.

در این پژوهش عملکرد پل ها به وسیله تحلیل استاتیکی غیر خطی تحت بررسی قرار گرفته است و نقاط عملکرد آنها بر اساس طیف نیاز آیین نامه طرح پل های راه و راه آهن در برابر زلزله بدست آمده است.

 

1-4ضرورت، اهمّیت و هدف تحقیق

ایران با داشتن زلزله های بزرگ هر سه سال یک بار و زلزله های متوسط سالیانه و همچنین حوادث غیرمترقبه نظیر سیل و طوفان و جنگ، شاید یکی از پر بحران ترین کشور های جهان باشد. واقعيت آن است كه توجه به بهسازي لرزه‌اي در كشورهاي لرزه‌خيز مانند ایران امري ضروري است كه عملا راه‌گريزي از آن وجود ندارد‌.

امروزه نگهداري از سازه ها به دليل هزينه ساخت و تعمير بسيار حائز اهميت مي باشد. با مطالعه رفتار سازه هاي بتني مشخص مي شود عوامل متعددي مانند: اشتباهات طراحي و محاسبه، عدم اجراي مناسب، تغييركاربري سازه ها از دوام آنها مي كاهد، ضمناً تغيير آيين نامه هاي ساختماني) باعث تغيير در بارگذاري و ضرايب اطمينان مي شود) نيز سبب ارزيابي و بازنگري مجدد طرح و سازه مي گردد تا در صورت لزوم بهسازي و تقويت شود، خرابي هاي مشاهده شده در ساختمان ها و پل ها طي زلزله هاي اخير نياز مبرم به مقاوم سازي لرزه اي سازه هاي موجود را نشان مي دهد.

پل ها سازه های حساسی هستند زیرا هر گونه صدمه به آنها باعث خسارات مالی و جانی در هنگام زلزله و بعد آن می شود. قبل از انجام مراحل مقاوم سازی، مطالعه بر روی سازه اهمیت بالایی دارد که در این بین پل ها به عنوان سازه های استراتژیک و مهم اهمیتی دو چندان دارند. عدم تخریب پل و خارج نشدن از بهره برداری پس از یک زمین لرزه شدید از بسیاری از تلفات جانی و اقتصادی پس از حادثه خواهد کاست.

در این میان ستون هاي بتن مسلح، اعضاي اصلي مقاوم در برابر بارهاي افقي و قائم در سازه هاي بتني به شمار مي آيند لذا مقاوم كردن ستون ها در برابر نيروهاي زلزله مي تواند نقش مهمي را در مقاوم سازي كل سازه ايفا كند در نتيجه استفاده از كامپوزيت هايFRP  جهت مقاوم سازي ستون هاي بتني مسلح در دنيا گسترش يافته است و مطالعه در اين زمينه از طرف محققين زيادي صورت مي گيرد. هدف از این مطالعه، بررسی رفتار لرزه ای یک پل با ابعاد واقعی به کمک تحلیل استاتیکی و دینامیکی غیر خطی وبهسازی آن با FRP می باشد برای صحت نتایج تحلیلی، نتایج دو تحلیل با یکدیگر مقایسه شده است.

 

1-5- ساختار تحقیق

مطالب موجود در این تحقیق به صورت زیر سازماندهی شده اند:

در فصل اول کلیات تحقیق، پیشینه تحقیق، هدف از انجام آن و سازماندهی مطالب مندرج در آن توضیح داده می شود. در فصل دوم به معرفی FRP پرداخته شده است. در فصل سوم روش های ارزیابی لرزه ای سازه ها بر اساس دستورالعمل های موجود مورد بررسی قرار گرفته است. در فصل چهارم روش های مدل سازی و تحلیل لرزه ای پل مورد ارزیابی قرار گرفته است. در فصل پنجم مدل مورد نظر صحت سنجی شده و خروجی های نرم افزاری حاصل از تحلیل دینامیکی و استاتیکی یاداشت شده است. در فصل ششم نتایج حاصل از تحلیل و در آخر پیشنهاداتی برای ادامه کار بیان شده است.

 

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

تعداد صفحه : 183

قیمت :14700 تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

:               [email protected]

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

***  *** ***

جستجو در سایت : کلمه کلیدی خود را وارد نمایید :